The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on...
For a general time-varying system, we prove that existence of an “Output Robust Control Lyapunov Function” implies existence of continuous time-varying feedback stabilizer, which guarantees output asymptotic stability with respect to the resulting closed-loop system. The main results of the present work constitute generalizations of a well known result due to Coron and Rosier [J. Math. Syst. Estim. Control 4 (1994) 67–84] concerning stabilization of autonomous systems by means of time-varying periodic...
For a general time-varying system, we prove that existence of an “Output
Robust Control Lyapunov Function” implies existence of continuous
time-varying feedback stabilizer, which guarantees output asymptotic
stability with respect to the resulting closed-loop system. The main results
of the present work constitute generalizations of a well known result
due to Coron and Rosier [
(1994) 67–84] concerning
stabilization of autonomous systems by means of time-varying periodic
feedback.
...
In this work, we propose a methodology for the expression of necessary and
sufficient Lyapunov-like conditions for the existence of stabilizing
feedback laws. The methodology is an extension of the well-known Control
Lyapunov Function (CLF) method and can be applied to very general nonlinear
time-varying systems with disturbance and control inputs, including both
finite and infinite-dimensional systems. The generality of the proposed
methodology is also reflected upon by the fact that partial...
Download Results (CSV)