Let G be a locally compact group with a fixed left Haar measure. Given Young functions φ and ψ, we consider the Orlicz spaces and on a non-unimodular group G, and, among other things, we prove that under mild conditions on φ and ψ, the set is well defined on G is σ-c-lower porous in . This answers a question raised by Głąb and Strobin in 2010 in a more general setting of Orlicz spaces. We also prove a similar result for non-compact locally compact groups.
Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let and be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach -submodule X of , the multiplier space is a dual Banach space with predual , where the closure is taken in the dual space of . We also prove that if is a Δ₂-regular N-function, then , the space of convolutors of , is identified with the dual of a Banach algebra of functions on G under pointwise...
Download Results (CSV)