The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Existence result for nonlinear parabolic problems with L¹-data

Abderrahmane El HachimiJaouad IgbidaAhmed Jamea — 2010

Applicationes Mathematicae

We study the existence of solutions of the nonlinear parabolic problem u / t - d i v [ | D u - Θ ( u ) | p - 2 ( D u - Θ ( u ) ) ] + α ( u ) = f in ]0,T[ × Ω, ( | D u - Θ ( u ) | p - 2 ( D u - Θ ( u ) ) ) · η + γ ( u ) = g on ]0,T[ × ∂Ω, u(0,·) = u₀ in Ω, with initial data in L¹. We use a time discretization of the continuous problem by the Euler forward scheme.

Page 1

Download Results (CSV)