The Relational Equations approach is one of the most usual ones for describing (Fuzzy) Systems and in most cases, it is the final expression for other descriptions. This is why the identification of Relational Equations from a set of examples has received considerable atention in the specialized literature. This paper is devoted to this topic, more specifically to the topic of max-min neural networks for identification. Three methods of learning Fuzzy Systems are developed by combining the most...
In previous papers, we presented an empirical methodology based on Neural Networks for obtaining fuzzy rules which allow a system to be described, using a set of examples with the corresponding inputs and outputs. Now that the previous results have been completed, we present another procedure for obtaining fuzzy rules, also based on Neural Networks with Backpropagation, with no need to establish beforehand the labels or values of the variables that govern the system.
In previous works, we have presented two methodologies to obtain fuzzy rules in order to describe the behaviour of a system. We have used Artificial Neural Netorks (ANN) with the Backpropagation algorithm, and a set of examples of the system. In this work, some modifications which allow to improve the results, by means of an adaptation or refinement of the variable labels in each rule, or the extraction of local rules using distributed ANN, are showed. An interesting application on the assignement...
In this paper, a methodology to obtain a set of fuzzy rules for classification systems is presented. The system is represented in a layered fuzzy network, in which the links from input to hidden nodes represents the antecedents of the rules, and the consequents are represented by links from hidden to output nodes. Specific genetic algorithms are used in two phases to extract the rules. In the first phase an initial version of the rules is extracted, and in second one, the labels are refined. The...
Download Results (CSV)