The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the vector-valued Fourier transform and compatibility of operators

In Sook Park — 2005

Studia Mathematica

Let be a locally compact abelian group and let 1 < p ≤ 2. ’ is the dual group of , and p’ the conjugate exponent of p. An operator T between Banach spaces X and Y is said to be compatible with the Fourier transform F if F T : L p ( ) X L p ' ( ' ) Y admits a continuous extension [ F , T ] : [ L p ( ) , X ] [ L p ' ( ' ) , Y ] . Let T p denote the collection of such T’s. We show that T p × = T p × = T p × for any and positive integer n. Moreover, if the factor group of by its identity component is a direct sum of a torsion-free group and a finite group with discrete topology then T p = T p .

Page 1

Download Results (CSV)