The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that if a real non-singular matrix () has all its minors of order non-negative and has all its minors of order which come from consecutive rows non-negative, then all th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
We show that each element in the semigroup of all non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of , which form a cone consisting of all upper (or lower) triangular intensity matrices.
Download Results (CSV)