The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On some equations over finite fields

Ioulia Baoulina — 2005

Journal de Théorie des Nombres de Bordeaux

In this paper, following L. Carlitz we consider some special equations of n variables over the finite field of q elements. We obtain explicit formulas for the number of solutions of these equations, under a certain restriction on n and q .

On the Carlitz problem on the number of solutions to some special equations over finite fields

Ioulia N. Baoulina — 2011

Journal de Théorie des Nombres de Bordeaux

We consider an equation of the type a 1 x 1 2 + + a n x n 2 = b x 1 x n over the finite field 𝔽 q = 𝔽 p s . Carlitz obtained formulas for the number of solutions to this equation when n = 3 and when n = 4 and q 3 ( mod 4 ) . In our earlier papers, we found formulas for the number of solutions when d = gcd ( n - 2 , ( q - 1 ) / 2 ) = 1 or 2 or 4 ; and when d > 1 and - 1 is a power of p modulo  2 d . In this paper, we obtain formulas for the number of solutions when d = 2 t , t 3 , p 3 or 5 ( mod 8 ) or p 9 ( mod 16 ) . For general case, we derive lower bounds for the number of solutions.

Page 1

Download Results (CSV)