On the growth rates of complexity of threshold languages
Threshold languages, which are the (/(–1))-free languages over -letter alphabets with ≥ 5, are the minimal infinite power-free languages according to Dejean's conjecture, which is now proved for all alphabets. We study the growth properties of these languages. On the base of obtained structural properties and computer-assisted studies we conjecture that the growth rate of complexity of the threshold language over letters tends to a constant as tends to infinity.