The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the semilinear Lane–Emden problem where and is a smooth bounded domain of . The aim of the paper is to analyze the asymptotic behavior of sign changing solutions of , as . Among other results we show, under some symmetry assumptions on , that the positive and negative parts of a family of symmetric solutions concentrate at the same point, as , and the limit profile looks like a tower of two bubbles given by a superposition of a regular and a singular solution of the Liouville...
Download Results (CSV)