The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Prolongements en fonctions algébriquement constructibles.

Isabelle Bonnard-Doré — 2004

Revista Matemática Complutense

In this paper we consider the following question: Let S be a semialgebraic subset of a real algebraic set V, and let φ: S → Z be a function on S. Is φ the restriction of an algebraically constructible function on V, i.e. a sum of signs of polynomials on V? We give an effective method to answer this question when φ(S) ⊂ {-1,1} or dim S ≤ 2 or S is basic.

Constructible functions on 2-dimensional analytic manifolds.

Isabelle BonnardFederica Pieroni — 2004

Revista Matemática Complutense

We present a characterization of sums of signs of global analytic functions on a real analytic manifold M of dimension two. Unlike the algebraic case, obstructions at infinity are not relevant: a function is a sum of signs on M if and only if this is true on each compact subset of M. This characterization gives a necessary and sufficient condition for an analytically constructible function, i.e. a linear combination with integer coefficients of Euler characteristic of fibers of proper analytic morphisms,...

Page 1

Download Results (CSV)