The class of loop spaces of which the mod cohomology is Noetherian is much larger than the class of -compact groups (for which the mod cohomology is required to be finite). It contains Eilenberg–Mac Lane spaces such as and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space of such an object and prove it is as small
as expected, that is, comparable to that of . We also show that X differs basically from the classifying space of a -compact group...
As is well known, torsion abelian groups are not preserved by localization functors. However, Libman proved that the cardinality of LT is bounded by whenever T is torsion abelian and L is a localization functor. In this paper we study localizations of torsion abelian groups and investigate new examples. In particular we prove that the structure of LT is determined by the structure of the localization of the primary components of T in many cases. Furthermore, we completely characterize the relationship...
Download Results (CSV)