The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Fredholm spectrum and growth of cohomology groups

Jörg Eschmeier — 2008

Studia Mathematica

Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let σ F ( T ) = σ ( T ) σ e ( T ) be the non-essential spectrum of T. We show that, for each connected component M of the manifold R e g ( σ F ( T ) ) of all smooth points of σ F ( T ) , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups H p ( ( z - T ) k , E ) grow at least like the sequence ( k d ) k 1 with d = dim M.

The essential spectrum of Toeplitz tuples with symbols in H + C

Jörg Eschmeier — 2013

Studia Mathematica

Let H²(D) be the Hardy space on a bounded strictly pseudoconvex domain D ⊂ ℂⁿ with smooth boundary. Using Gelfand theory and a spectral mapping theorem of Andersson and Sandberg (2003) for Toeplitz tuples with H -symbol, we show that a Toeplitz tuple T f = ( T f , . . . , T f ) L ( H ² ( σ ) ) m with symbols f i H + C is Fredholm if and only if the Poisson-Szegö extension of f is bounded away from zero near the boundary of D. Corresponding results are obtained for the case of Bergman spaces. Thus we extend results of McDonald (1977) and Jewell (1980)...

A commutant lifting theorem on analytic polyhedra

Calin AmbrozieJörg Eschmeier — 2005

Banach Center Publications

In this note a commutant lifting theorem for vector-valued functional Hilbert spaces over generalized analytic polyhedra in ℂⁿ is proved. Let T be the compression of the multiplication tuple M z to a *-invariant closed subspace of the underlying functional Hilbert space. Our main result characterizes those operators in the commutant of T which possess a lifting to a multiplier with Schur class symbol. As an application we obtain interpolation results of Nevanlinna-Pick and Carathéodory-Fejér type...

Page 1

Download Results (CSV)