We characterize the UMD-property of a Banach space X by sequences of ideal norms associated with trigonometric orthonormal systems. The asymptotic behavior of those numerical parameters can be used to decide whether X is a UMD-space. Moreover, if this is not the case, we obtain a measure that shows how far X is from being a UMD-space. The main result is that all described sequences are not only simultaneously bounded but are also asymptotically equivalent.
The concept of uniform convexity of a Banach space was gen- eralized to linear operators between Banach spaces and studied by Beauzamy [1]. Under this generalization, a Banach space X is uniformly convex if and only if its identity map Ix is. Pisier showe
We consider the question of whether the trigonometric system can be equivalent to some rearrangement of the Walsh system in for some p ≠ 2. We show that this question is closely related to a combinatorial problem. This enables us to prove non-equivalence for a number of rearrangements. Previously this was known for the Walsh-Paley order only.
Download Results (CSV)