The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

WORM Colorings of Planar Graphs

J. CzapS. Jendrol’J. Valiska — 2017

Discussiones Mathematicae Graph Theory

Given three planar graphs F,H, and G, an (F,H)-WORM coloring of G is a vertex coloring such that no subgraph isomorphic to F is rainbow and no subgraph isomorphic to H is monochromatic. If G has at least one (F,H)-WORM coloring, then W−F,H(G) denotes the minimum number of colors in an (F,H)-WORM coloring of G. We show that (a) W−F,H(G) ≤ 2 if |V (F)| ≥ 3 and H contains a cycle, (b) W−F,H(G) ≤ 3 if |V (F)| ≥ 4 and H is a forest with Δ (H) ≥ 3, (c) W−F,H(G) ≤ 4 if |V (F)| ≥ 5 and H is a forest with...

Page 1

Download Results (CSV)