The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Characterizations of complex space forms by means of geodesic spheres and tubes

J. Gillard — 1996

Colloquium Mathematicae

We prove that a connected complex space form ( M n ,g,J) with n ≥ 4 can be characterized by the Ricci-semi-symmetry condition R ˜ X Y · ϱ ˜ = 0 and by the semi-parallel condition R ˜ X Y · σ = 0 , considering special choices of tangent vectors X , Y to small geodesic spheres or geodesic tubes (that is, tubes about geodesics), where R ˜ , ϱ ˜ and σ denote the Riemann curvature tensor, the corresponding Ricci tensor of type (0,2) and the second fundamental form of the spheres or tubes and where R ˜ X Y acts as a derivation.

Page 1

Download Results (CSV)