We show that any uniformly continuous and convex compact valued Nemytskiĭ composition operator acting in the spaces of functions of bounded φ-variation in the sense of Riesz is generated by an affine function.
Assume that the generator of a Nemytskii composition operator is a function of three variables: the first two real and third in a closed convex subset of a normed space, with values in a real Banach space. We prove that if this operator maps a certain subset of the Banach space of functions of two real variables of bounded Wiener -variation into another Banach space of a similar type, and is uniformly continuous, then the one-sided regularizations of the generator are affine in the third variable....
Download Results (CSV)