Weak countable compactness implies quasi-weak drop property
Every weakly countably compact closed convex set in a locally convex space has the quasi-weak drop property.
Every weakly countably compact closed convex set in a locally convex space has the quasi-weak drop property.
By modifying the method of Phelps, we obtain a new version of Ekeland's variational principle in the framework of Fréchet spaces, which admits a very general form of perturbations. Moreover we give a density result concerning extremal points of lower semicontinuous functions on Fréchet spaces. Even in the framework of Banach spaces, our result is a proper improvement of the related known result. From this, we derive a new version of Caristi's fixed point theorem and a density result for Caristi...
Every weakly sequentially compact convex set in a locally convex space has the weak drop property and every weakly compact convex set has the quasi-weak drop property. An example shows that the quasi-weak drop property is strictly weaker than the weak drop property for closed bounded convex sets in locally convex spaces (even when the spaces are quasi-complete). For closed bounded convex subsets of quasi-complete locally convex spaces, the quasi-weak drop property is equivalent to weak compactness....
A new drop property, the quasi-weak drop property, is introduced. Using streaming sequences introduced by Rolewicz, a characterisation of the quasi-weak drop property is given for closed bounded convex sets in a Fréchet space. From this, it is shown that the quasi-weak drop property is equivalent to weak compactness. Thus a Fréchet space is reflexive if and only if every closed bounded convex set in the space has the quasi-weak drop property.
The notion of local completeness is extended to locally pseudoconvex spaces. Then a general version of the Borwein-Preiss variational principle in locally complete locally pseudoconvex spaces is given, where the perturbation is an infinite sum involving differentiable real-valued functions and subadditive functionals. From this, some particular versions of the Borwein-Preiss variational principle are derived. In particular, a version with respect to the Minkowski gauge of a bounded closed convex...
In the framework of locally p-convex spaces, two versions of Ekeland's variational principle and two versions of Caristi's fixed point theorem are given. It is shown that the four results are mutually equivalent. Moreover, by using the local completeness theory, a p-drop theorem in locally p-convex spaces is proven.
Page 1