The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Global orthogonality implies local almost-orthogonality.

J. Michael Wilson — 2000

Revista Matemática Iberoamericana

We introduce a new stopping-time argument, adapted to handle linear sums of noncompactly-supported functions that satisfy fairly weak decay, smoothness, and cancellation conditions. We use the argument to obtain a new Littlewood-Paley-type result for such sums.

Weighted inequalities for gradients on non-smooth domains

We prove sufficiency of conditions on pairs of measures μ and ν, defined respectively on the interior and the boundary of a bounded Lipschitz domain Ω in d-dimensional Euclidean space, which ensure that, if u is the solution of the Dirichlet problem. Δu = 0 in Ω, u | Ω = f , with f belonging to a reasonable test class, then ( Ω | u | q d μ ) 1 / q ( Ω | f | p d ν ) 1 / p , where 1 < p ≤ q < ∞ and q ≥ 2. Our sufficiency conditions resemble those found by Wheeden and Wilson for the Dirichlet problem on d + 1 . As in that case we attack the problem by...

Page 1

Download Results (CSV)