On lattices of varieties of universal algebras
Let τ:F → ℕ be a type of algebras, where F is a set of fundamental operation symbols and ℕ is the set of nonnegative integers. We assume that |F|≥2 and 0 ∉ (F). For a term φ of type τ we denote by F(φ) the set of fundamental operation symbols from F occurring in φ. An identity φ ≉ ψ of type τ is called clone compatible if φ and ψ are the same variable or F(φ)=F(ψ)≠. For a variety V of type τ we denote by the variety of type τ defined by all identities φ ≉ ψ from Id(V) which are either clone compatible...
Page 1 Next