We study one-parameter families of diffeomorphisms unfolding heterodimensional cycles (i.e. cycles containing periodic points of different indices). We construct an open set of such arcs such that, for a subset of the parameter space with positive relative density at the bifurcation value, the resulting nonwandering set is the disjoint union of two hyperbolic basic sets of different indices and a strong partially hyperbolic set which is robustly transitive. The dynamics of the diffeomorphisms we...
Von Bertalanffy’s model is one of the most popular differential equation used in order to study the increase in average length or weight of fish. However, this model does not include demographic Allee effect. This phenomenon is known in the fisheries literature as “depensation”, which arises when populations decline rapidly at low densities. In this paper we develop and investigate new corrected von Bertalanffy’s models with Allee effects. The generalization that we propose results from considering...
Starting from the random extension of the Cantor middle set in [0,1], by iteratively removing the central uniform spacing from the intervals remaining in the previous step, we define random Beta(p,1)-Cantor sets, and compute their Hausdorff dimension. Next we define a deterministic counterpart, by iteratively removing the expected value of the spacing defined by the appropriate Beta(p,1) order statistics. We investigate the reasons why the Hausdorff dimension of this deterministic fractal is greater...
Download Results (CSV)