Nuevo catálogo de títulos de grado.
Let X be a Banach space, a norming set and (X,B) the topology on X of pointwise convergence on B. We study the following question: given two (non-negative, countably additive and finite) measures μ₁ and μ₂ on Baire(X,w) which coincide on Baire(X,(X,B)), does it follow that μ₁ = μ₂? It turns out that this is not true in general, although the answer is affirmative provided that both μ₁ and μ₂ are convexly τ-additive (e.g. when X has the Pettis Integral Property). For a Banach space Y not containing...
In this paper we get an algebraic derivative relative to the convolution associated to the operator , which is used, together with the corresponding operational calculus, to solve an integral-differential equation. Moreover we show a certain convolution property for the solution of that equation
We present the basic theory of the most natural algebraic counterpart of the ℵ-valued Lukasiewicz calculus, strictly logically formulated. After showing its lattice structure and its relation to C. C. Chang's MV-algebras we study the implicative filters and prove its equivalence to congruence relations. We present some properties of the variety of all Wajsberg algebras, among which there is a representation theorem. Finally we give some characterizations of linear, simple and semisimple algebras....
We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...
Our aim is to look for precise definitions of musical concepts. In this work we present the concepts we have been able to derive from the concept of pitch (high-low aspect of musical sounds). Now, pitches being the primitive concept, they will not be defined from a previous concept, but from their mutual relationships.
Page 1