The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce a quantitative measure Δ of stability in optimal sequential testing of two simple hypotheses about a density of observations: f=f₀ versus f=f₁. The index Δ represents an additional cost paid when a stopping rule optimal for the pair (f₀,f₁) is applied to test the hypothesis f=f₀ versus a "perturbed alternative" f=f̃₁. An upper bound for Δ is established in terms of the total variation distance between f₁(X)/f₀(X) and f̃₁(X)/f₀(X) with X∼f₀.
We consider the following version of the standard problem of empirical estimates in stochastic optimization. We assume that the underlying random vectors are independent and not necessarily identically distributed but that they satisfy a "slow variation" condition in the sense of the definition given in this paper. We show that these assumptions along with the usual restrictions (boundedness and equicontinuity) on a class of functions allow one to use the empirical mean method to obtain a consistent...
Download Results (CSV)