The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Some properties of N-supercyclic operators

P. S. BourdonN. S. FeldmanJ. H. Shapiro — 2004

Studia Mathematica

Let T be a continuous linear operator on a Hausdorff topological vector space 𝓧 over the field ℂ. We show that if T is N-supercyclic, i.e., if 𝓧 has an N-dimensional subspace whose orbit under T is dense in 𝓧, then T* has at most N eigenvalues (counting geometric multiplicity). We then show that N-supercyclicity cannot occur nontrivially in the finite-dimensional setting: the orbit of an N-dimensional subspace cannot be dense in an (N+1)-dimensional space. Finally, we show that a subnormal operator...

Page 1

Download Results (CSV)