The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Boundedness properties of resolvents and semigroups of operators

J. van Casteren — 1997

Banach Center Publications

Let T: H → H be an operator in the complex Hilbert space H. Suppose that T is square bounded in average in the sense that there exists a constant M(T) with the property that, for all natural numbers n and for all x ∈ H, the inequality 1 / ( n + 1 ) j = 0 n T j x 2 M ( T ) 2 x 2 is satisfied. Also suppose that the adjoint T* of the operator T is square bounded in average with constant M(T*). Then the operator T is power bounded in the sense that s u p T i n : n is finite. In fact the following inequality is valid for all n ∈ ℕ: ∥Tn∥ ≤ e M(T)M(T*). Suppose...

Page 1

Download Results (CSV)