On the division by Rn.
Let X be a quasi-Banach space. We prove that there exists K > 0 such that for every function w:ℝ → X satisfying ||w(s+t)-w(s)-w(t)|| ≤ ε(|s|+|t|) for s,t ∈ ℝ, there exists a unique additive function a:ℝ → X such that a(1)=0 and ||w(s)-a(s)-sθ(log₂|s|)|| ≤ Kε|s| for s ∈ ℝ, where θ: ℝ → X is defined by for k ∈ ℤ and extended in a piecewise linear way over the rest of ℝ.
We give a meaning to derivative of a function , where is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space of . Let , be continuous at zero. Then by the definition and are in the same equivalence class if they are tangent at zero, that is if By we denote...
There are many inequalities which in the class of continuous functions are equivalent to convexity (for example the Jensen inequality and the Hermite-Hadamard inequalities). We show that this is not a coincidence: every nontrivial linear inequality which is valid for all convex functions is valid only for convex functions.
There are many types of midconvexities, for example Jensen convexity, t-convexity, (s,t)-convexity. We provide a uniform framework for all the above mentioned midconvexities by considering a generalized middle-point map on an abstract space X. We show that we can define and study the basic convexity properties in this setting.
We provide a unified approach to different types of shadowing. This enables us to generalize some known shadowing result.
Page 1