The geometry of Calogero-Moser systems
We give a geometric construction of the phase space of the elliptic Calogero-Moser system for arbitrary root systems, as a space of Weyl invariant pairs (bundles, Higgs fields) on the -th power of the elliptic curve, where is the rank of the root system. The Poisson structure and the Hamiltonians of the integrable system are given natural constructions. We also exhibit a curious duality between the spectral varieties for the system associated to a root system, and the Lagrangian varieties for...