Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Systèmes aux q -différences singuliers réguliers : classification, matrice de connexion et monodromie

Jacques Sauloy — 2000

Annales de l'institut Fourier

G.D. Birkhoff a posé, par analogie avec le cas classique des équations différentielles, le problème de Riemann-Hilbert pour les systèmes “fuchsiens” aux q -différences linéaires, à coefficients rationnels. Il l’a résolu dans le cas générique: l’objet classifiant qu’il introduit est constitué de la matrice de connexion P et des exposants en 0 et . Nous reprenons sa méthode dans le cas général, mais en traitant symétriquement 0 et et sans recours à des solutions à croissance “sauvage”. Lorsque q ...

La filtration canonique par les pentes d’un module aux q -différences et le gradué associé

Jacques Sauloy — 2004

Annales de l’institut Fourier

Nous montrons que le polygone de Newton d’une équation aux q -différences linéaire ne dépend que du module aux q -différences correspondant. Nous interprétons les résultats classiques de factorisation convergente de Adams-Birkhoff-Guenther en termes d’existence d’une filtration canonique par les pentes. De plus, le gradué associé possède d’excellentes propriétés fonctorielles et tensorielles.

Page 1

Download Results (CSV)