The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A series whose sum range is an arbitrary finite set

Jakub Onufry Wojtaszczyk — 2005

Studia Mathematica

In finite-dimensional spaces the sum range of a series has to be an affine subspace. It has long been known that this is not the case in infinite-dimensional Banach spaces. In particular in 1984 M. I. Kadets and K. Woźniakowski obtained an example of a series whose sum range consisted of two points, and asked whether it was possible to obtain more than two, but finitely many points. This paper answers this question affirmatively, by showing how to obtain an arbitrary finite set as the sum range...

No return to convexity

Jakub Onufry Wojtaszczyk — 2010

Studia Mathematica

We study the closures of classes of log-concave measures under taking weak limits, linear transformations and tensor products. We investigate which uniform measures on convex bodies can be obtained starting from some class 𝒦. In particular we prove that if one starts from one-dimensional log-concave measures, one obtains no non-trivial uniform mesures on convex bodies.

A Simpler Proof of the Negative Association Property for Absolute Values of Measures Tied to Generalized Orlicz Balls

Jakub Onufry Wojtaszczyk — 2009

Bulletin of the Polish Academy of Sciences. Mathematics

Negative association for a family of random variables ( X i ) means that for any coordinatewise increasing functions f,g we have ( X i , . . . , X i k ) g ( X j , . . . , X j l ) f ( X i , . . . , X i k ) g ( X j , . . . , X j l ) for any disjoint sets of indices (iₘ), (jₙ). It is a way to indicate the negative correlation in a family of random variables. It was first introduced in 1980s in statistics by Alem Saxena and Joag-Dev Proschan, and brought to convex geometry in 2005 by Wojtaszczyk Pilipczuk to prove the Central Limit Theorem for Orlicz balls. The paper gives a relatively simple proof of...

Page 1

Download Results (CSV)