The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Continuous tree-like scales

James Cummings — 2010

Open Mathematics

Answering a question raised by Luis Pereira, we show that a continuous tree-like scale can exist above a supercompact cardinal. We also show that the existence of a continuous tree-like scale at ℵω is consistent with Martin’s Maximum.

More results in polychromatic Ramsey theory

Uri AbrahamJames Cummings — 2012

Open Mathematics

We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2ω = ω 2 and ω 2 p o l y ( α ) 0 - b d d 2 for every α <ω 2; (2) 2ω = ω 2 and ω 2 p o l y ( ω 1 ) 2 - b d d 2 .

Page 1

Download Results (CSV)