We establish sharp (H,L) and local (L logL,L) mapping properties for rough one-dimensional multipliers. In particular, we show that the multipliers in the Marcinkiewicz multiplier theorem map H to L and L logL to L, and that these estimates are sharp.
We consider variants of van der Corput's lemma in higher dimensions.
[Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].
We prove three results concerning convolution operators and lacunary maximal functions associated to dilates of measures. First we obtain an H¹ to bound for lacunary maximal operators under a dimensional assumption on the underlying measure and an assumption on an regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient condition for L² boundedness of lacunary maximal operator associated to averages over convex curves in the plane. Finally we prove an regularity result...
Let K be a Calderón-Zygmund kernel and P a real polynomial defined on ℝⁿ with P(0) = 0. We prove that convolution with Kexp(i/P) is continuous on L²(ℝⁿ) with bounds depending only on K, n and the degree of P, but not on the coefficients of P.
We consider singular integral operators on ℝ given by convolution with a principal value distribution defined by integrating against oscillating kernels of the form where R(x) = P(x)/Q(x) is a general rational function with real coefficients. We establish weak-type (1,1) bounds for such operators which are uniform in the coefficients, depending only on the degrees of P and Q. It is not always the case that these operators map the Hardy space H¹(ℝ) to L¹(ℝ) and we will characterise those rational...
In this paper we study the Hilbert transform and maximal function related to a curve in R.
We examine several scalar oscillatory singular integrals involving a real-analytic phase function φ(s,t) of two real variables and illustrate how one can use the Newton diagram of φ to efficiently analyse these objects. We use these results to bound certain singular integral operators.
We strengthen the Carleson-Hunt theorem by proving estimates for the -variation of the partial sum operators for Fourier series and integrals, for . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.
Download Results (CSV)