The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On the closure of spaces of sums of ridge functions and the range of the X -ray transform

Jan Boman — 1984

Annales de l'institut Fourier

For a R n { 0 } and Ω an open bounded subset of R n definie L p ( Ω , a ) as the closed subset of L p ( Ω ) consisting of all functions that are constant almost everywhere on almost all lines parallel to a . For a given set of directions a ν R n { 0 } , ν = 1 , ... , m , we study for which Ω it is true that the vector space ( * ) L p ( Ω , a 1 ) + + L p ( Ω , a m ) is a closed subspace of L p ( Ω ) . This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed...

Page 1

Download Results (CSV)