Currently displaying 1 – 20 of 26

Showing per page

Order by Relevance | Title | Year of publication

On formal theory of differential equations. III.

Jan Chrastina — 1991

Mathematica Bohemica

Elements of the general theory of Lie-Cartan pseudogroups (including the intransitive case) are developed within the framework of infinitely prolonged systems of partial differential equations (diffieties) which makes it independent of any particular realizations by transformations of geometric object. Three axiomatic approaches, the concepts of essential invariant, subgroup, normal subgroup and factorgroups are discussed. The existence of a very special canonical composition series based on Cauchy...

Solution of the inverse problem of the calculus of variations

Jan Chrastina — 1994

Mathematica Bohemica

Given a family of curves constituting the general solution of a system of ordinary differential equations, the natural question occurs whether the family is identical with the totality of all extremals of an appropriate variational problem. Assuming the regularity of the latter problem, effective approaches are available but they fail in the non-regular case. However, a rather unusual variant of the calculus of variations based on infinitely prolonged differential equations and systematic use of...

Examples from the calculus of variations. I. Nondegenerate problems

Jan Chrastina — 2000

Mathematica Bohemica

The criteria of extremality for classical variational integrals depending on several functions of one independent variable and their derivatives of arbitrary orders for constrained, isoperimetrical, degenerate, degenerate constrained, and so on, cases are investigated by means of adapted Poincare-Cartan forms. Without ambitions on a noble generalizing theory, the main part of the article consists of simple illustrative examples within a somewhat naive point of view in order to obtain results resembling...

Examples from the calculus of variations. III. Legendre and Jacobi conditions

Jan Chrastina — 2001

Mathematica Bohemica

We will deal with a new geometrical interpretation of the classical Legendre and Jacobi conditions: they are represented by the rate and the magnitude of rotation of certain linear subspaces of the tangent space around the tangents to the extremals. (The linear subspaces can be replaced by conical subsets of the tangent space.) This interpretation can be carried over to nondegenerate Lagrange problems but applies also to the degenerate variational integrals mentioned in the preceding Part II.

Examples from the calculus of variations. IV. Concluding review

Jan Chrastina — 2001

Mathematica Bohemica

Variational integrals containing several functions of one independent variable subjected moreover to an underdetermined system of ordinary differential equations (the Lagrange problem) are investigated within a survey of examples. More systematical discussion of two crucial examples from Part I with help of the methods of Parts II and III is performed not excluding certain instructive subcases to manifest the significant role of generalized Poincaré-Cartan forms without undetermined multipliers....

Page 1 Next

Download Results (CSV)