The minimum variance unbiased, the maximum likelihood, the Bayes, and the naive estimates of the reliability function of a normal distribution are studied. Their asymptotic normality is proved and asymptotic expansions for both the expectation and the mean squared error are derived. The estimates are then compared using the concept of deficiency. In the end an extensive Monte Carlo study of the estimates in small samples is given.
The paper gives some basic ideas of both the construction and investigation of the properties of the Bayesian estimates of certain parametric functions of the parent exponential distribution under the model of random censorship assuming the Koziol–Green model. Various prior distributions are investigated and the corresponding estimates are derived. The stress is put on the asymptotic properties of the estimates with the particular stress on the Bayesian risk. Small sample properties are studied...
In this paper we consider the problem of estimating the intensity of a spatial homogeneous Poisson process if a part of the observations (quadrat counts) is censored. The actual problem has occurred during a court case when one of the authors was a referee for the defense.
Download Results (CSV)