Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Operator Lipschitz functions on Banach spaces

Jan RozendaalFedor SukochevAnna Tomskova — 2016

Studia Mathematica

Let X, Y be Banach spaces and let (X,Y) be the space of bounded linear operators from X to Y. We develop the theory of double operator integrals on (X,Y) and apply this theory to obtain commutator estimates of the form | | f ( B ) S - S f ( A ) | | ( X , Y ) c o n s t | | B S - S A | | ( X , Y ) for a large class of functions f, where A ∈ (X), B ∈ (Y) are scalar type operators and S ∈ (X,Y). In particular, we establish this estimate for f(t): = |t| and for diagonalizable operators on X = p and Y = q for p < q. We also study the estimate above in the setting of Banach ideals...

Page 1

Download Results (CSV)