Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

O-minimal fields with standard part map

Jana Maříková — 2010

Fundamenta Mathematicae

Let R be an o-minimal field and V a proper convex subring with residue field k and standard part (residue) map st: V → k. Let k i n d be the expansion of k by the standard parts of the definable relations in R. We investigate the definable sets in k i n d and conditions on (R,V) which imply o-minimality of k i n d . We also show that if R is ω-saturated and V is the convex hull of ℚ in R, then the sets definable in k i n d are exactly the standard parts of the sets definable in (R,V).

Triangulation in o-minimal fields with standard part map

Lou van den DriesJana Maříková — 2010

Fundamenta Mathematicae

In answering questions of J. Maříková [Fund. Math. 209 (2010)] we prove a triangulation result that is of independent interest. In more detail, let R be an o-minimal field with a proper convex subring V, and let st: V → k be the corresponding standard part map. Under a mild assumption on (R,V) we show that a definable set X ⊆ Vⁿ admits a triangulation that induces a triangulation of its standard part st X ⊆ kⁿ.

Page 1

Download Results (CSV)