On a generalization of the Cauchy functional equation. (Summary).
Let M be a non-empty set endowed with a dense linear order without the smallest and greatest elements. Let (G,+) be a group which has a non-trivial uniquely divisible subgroup. There are given conditions under which every solution F: M×G → M of the translation equation is of the form for a ∈ M, x ∈ G with some non-trivial additive function c: G → ℝ and a strictly increasing function f: M → ℝ such that f(M) + c(G) ⊂ f(M). In particular, a problem of J. Tabor is solved.
Let K denote the set of all reals or complex numbers. Let X be a topological linear separable F-space over K. The following generalization of the result of C. G. Popa [16] is proved. Theorem. Let n be a positive integer. If a Christensen measurable function f: X → K satisfies the functional equation , then it is continuous or the set x ∈ X : f(x) ≠ 0 is a Christensen zero set.
Let be a disjoint iteration semigroup of diffeomorphisms mapping a real open interval onto . It is proved that if has a dense orbit possesing a subset of the second category with the Baire property, then for some diffeomorphism of onto the set of all reals . The paper generalizes some results of J.A.Baker and G.Blanton [3].
Page 1