Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Modular symbols, Eisenstein series, and congruences

Jay HeumannVinayak Vatsal — 2014

Journal de Théorie des Nombres de Bordeaux

Let E and f be an Eisenstein series and a cusp form, respectively, of the same weight k 2 and of the same level N , both eigenfunctions of the Hecke operators, and both normalized so that a 1 ( f ) = a 1 ( E ) = 1 . The main result we prove is that when E and f are congruent mod a prime 𝔭 (which we take in this paper to be a prime of ¯ lying over a rational prime p > 2 ), the algebraic parts of the special values L ( E , χ , j ) and L ( f , χ , j ) satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions, ...

Page 1

Download Results (CSV)