Invariants de classes : propriétés fonctorielles et applications à l’étude du noyau
L’homomorphisme de classes mesure la structure galoisienne de torseurs – sous un schéma en groupes fini et plat – obtenus grâce au cobord d’une suite exacte. Son introduction est due à Martin Taylor (la suite exacte étant une isogénie entre schémas abéliens). Nous commençons par énoncer quelques propriétés générales de cet homomorphisme, puis nous poursuivons son étude dans le cas où la suite exacte est donnée par la multiplication par sur une extension d’un schéma abélien par un tore.