Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Generalized Conley-Zehnder index

Jean Gutt — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit 1 as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space ( W , Ω ¯ ) , having chosen a given reference...

Page 1

Download Results (CSV)