We consider a Markov chain on a locally compact separable metric space and with a unique invariant probability. We show that such a chain can be classified into two categories according to the type of convergence of the expected occupation measures. Several properties in each category are investigated.
We consider the problem of calculating a closed form expression for the integral of a real-valued function f:ℝⁿ → ℝ on a set S. We specialize to the particular cases when S is a convex polyhedron or an ellipsoid, and the function f is either a generalized polynomial, an exponential of a linear form (including trigonometric polynomials) or an exponential of a quadratic form. Laplace transform techniques allow us to obtain either a closed form expression, or a series representation that can be handled...
This paper introduces necessary and/or sufficient conditions for the existence of solutions (g,h) to the probabilistic multichain Poisson equation
(a) g = Pg and (b) g+h-Ph = f,
with a given charge f, where P is a Markov kernel (or transition probability function) on a general measurable space. The existence conditions are derived via three different approaches, using (1) canonical pairs, (2) Cesàro averages, and (3) resolvents.
Download Results (CSV)