The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
En adaptant les méthodes algébriques et géométriques qu’utilisent M. Sato, T. Kawai et M. Kashiwara pour obtenir le faisceau des microfonctions, nous construisons de manière fonctorielle, donc intrinsèque, un faisceau sur la sphère cotangente à un espace vectoriel réel de dimension finie . Les sections de ce faisceau jouent vis-à-vis des fonctions analytiques sur un rôle analogue à celui des microfonctions vis-à-vis des hyperfonctions. Nous en déduisons une notions de front d’onde à l’infini...
Download Results (CSV)