De Lambert à Cauchy : la résolution des équations littérales par le moyen des séries
En 1770, Lagrange démontre la formule qui porte son nom et qui donne, sous forme de série, l’expression de la racine d’une équation algébrique ou transcendante. La formule elle-même et la méthode de démonstration sont significatives du style et de la pensée de l’auteur de la . De nombreuses études sont consacrées ensuite à ce théorème de Lagrange par d’autres mathématiciens. Elles portent la trace de préoccupations ou d’exigences particulières à leurs auteurs. Elles accompagnent parfois des tentatives...