In this paper, we introduce a new iterative process for finding the common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality problem for an α-inverse-strongly-monotone, by combining an modified extragradient scheme with the viscosity approximation method. We prove a strong convergence theorem for the sequences generated by this new iterative process.
We define a non-smooth guiding function for a functional differential inclusion and apply it to the study the asymptotic behavior of its solutions.
We consider a neutral type operator differential inclusion and apply the topological degree theory for condensing multivalued maps to justify the question of existence of its periodic solution. By using the averaging method, we apply the abstract result to an inclusion with a small parameter. As example, we consider a delay control system with the distributed control.
The existence results for an abstract Cauchy problem involving a higher order differential inclusion with infinite delay in a Banach space are obtained. We use the concept of the existence family to express the mild solutions and impose the suitable conditions on the nonlinearity via the measure of noncompactness in order to apply the theory of condensing multimaps for the demonstration of our results. An application to some classes of partial differential equations is given.
Download Results (CSV)