The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
SummaryIn 1979 the second named author proved, in a joint paper with J. Ławrynowicz, the existence of a foliation of a bounded domain in by complex submanifolds of codimension k+p-1, connected in some sense with a real (1,1) C³-form of rank k and the pth power of the complex Hessian of a C³-function u with im u plurisubharmonic and the property that for every leaf of this foliation the restricted functions im u, re u and , are pluriharmonic and holomorphic, respectively.Now the theorem is extended...
Decomposing the space of k-tensors on a manifold M into the components invariant and irreducible under the action of GL(n) (or O(n) when M carries a Riemannian structure) one can define generalized gradients as differential operators obtained from a linear connection ∇ on M by restriction and projection to such components. We study the ellipticity of gradients defined in this way.
A Weitzenböck formula for SL(q)-foliations is derived. Its linear part is a relative trace of the relative curvature operator acting on vector valued forms.
A Weitzenböck formula for the Laplace-Beltrami operator acting on differential forms on Lie algebroids is derived.
Download Results (CSV)