Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On some conjecture concerning Gaussian measures of dilatations of convex symmetric sets

Stanisław KwapieńJerzy Sawa — 1993

Studia Mathematica

The paper deals with the following conjecture: if μ is a centered Gaussian measure on a Banach space F,λ > 1, K ⊂ F is a convex, symmetric, closed set, P ⊂ F is a symmetric strip, i.e. P = {x ∈ F : |x'(x)| ≤ 1} for some x' ∈ F', such that μ(K) = μ(P) then μ(λK) ≥ μ(λP). We prove that the conjecture is true under the additional assumption that K is "sufficiently symmetric" with respect to μ, in particular it is true when K is a ball in Hilbert space. As an application we give estimates of Gaussian...

Page 1

Download Results (CSV)