Let f(x) be a complex rational function. We study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we also derive some conditions for the case of complex polynomials.
Let be a polynomial with integral coefficients. Shapiro showed that if the values of at infinitely many blocks of consecutive integers are of the form , where is a polynomial with integral coefficients, then for some polynomial . In this paper, we show that if the values of at finitely many blocks of consecutive integers, each greater than a provided bound, are of the form where is an integer greater than 1, then for some polynomial .
Download Results (CSV)