Optical diffraction on a periodical interface belongs to relatively lowly exploited applications of the boundary integral equations method. This contribution presents a less frequent approach to the diffraction problem based on vector tangential fields of electromagnetic intensities. The problem is formulated as the system of boundary integral equations for tangential fields, for which existence and uniqueness of weak solution is proved. The properties of introduced boundary operators with singular...
We present the formulation of optical diffraction problem on periodic interface based on vector tangential fields, for which the system of boundary integral equations is established. Obtained mathematical model is numerically solved using boundary element method and applied to sine interface profile.
Optical diffraction for periodical interface belongs to relatively fewer exploited application of boundary integral equations method. Our contribution presents the formulation of diffraction problem based on vector tangential fields, for which the periodical Green function of Helmholtz equation is of key importance. There are discussed properties of obtained boundary operators with singular kernel and a numerical implementation is proposed.
Download Results (CSV)