The paper deals with linear transformations of harmonizable locally stationary random processes. Necessary and sufficient conditions under which a linear transformation defines again a locally stationary process are given.
The author in the paper evaluates the Rényi distances between two Gaussian measures using properties of nuclear operators and expresses the formula for the asymptotic rate of the Rényi distances of stationary Gaussian measures by the corresponding spectral density functions in a general case.
The paper investigates the relation between maximum likelihood and minimum -divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the continuous time.
The paper investigates the relation between maximum likelihood and minimum -divergence estimates of unknown parameters and studies the asymptotic behaviour of the likelihood ratio maximum. Observations are assumed to be done in the discrete time.
Download Results (CSV)