The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let Ks,t be the complete bipartite graph with partite sets of size s and t. Let L1 = ([a1, b1], . . . , [am, bm]) and L2 = ([c1, d1], . . . , [cn, dn]) be two sequences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ . . . ≥ am and c1 ≥ c2 ≥ . . . ≥ cn. We say that L = (L1; L2) is potentially Ks,t (resp. As,t)-bigraphic if there is a simple bipartite graph G with partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that ai ≤ dG(xi) ≤ bi for 1 ≤ i ≤ m, ci ≤ dG(yi) ≤ di for...
Download Results (CSV)