Suppose ℒ₁ and ℒ₂ are subspace lattices on complex separable Banach spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from algℒ₁ to algℒ₂ is quasi-spatial; in particular, if a subspace lattice ℒ of a complex separable Banach space X contains a sequence such that , , and then every automorphism of algℒ is quasi-spatial.
Let 𝓛 be a subspace lattice on a Banach space X and let δ: Alg𝓛 → B(X) be a linear mapping. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L}= X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0), we show that the following three conditions are equivalent: (1) δ(AB) = δ(A)B + Aδ(B) whenever AB = 0; (2) δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0; (3) δ is a generalized derivation and δ(I) ∈ (Alg𝓛)'. If ⋁ {L ∈ 𝓛 : L₋ ⊉ L} = X or ⋁ {L₋ : L ∈ 𝓛, L₋ ⊉ L} = (0) and δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A)...
We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.
Download Results (CSV)